Abstract

Porous sludge biochar (PSDBC) and zero-valent iron (ZVI) supported on porous sludge biochar composite (ZVI@PSDBC) were synthesized using municipal sludge through pyrolysis under N2 atmosphere, which manifested upgraded performance in persulfate (PS) activation for 2,4-dichlorophenol (2,4-DCP) degradation. The 2,4-DCP (50 mg/L) could be almost completely removed within 20 min under relatively low PS dosage (0.5 mmol/L) in both PSDBC/PS and ZVI@PSDBC/PS systems, and the mineralization rate could respectively approach 73.7% and 91.6% in 60 min. Combined with a scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) characterization and electron spin-resonance (ESR) detection, electrochemical analysis, the radical and non-radical pathways in the catalytic systems were discussed. Graphitized structure and superior conductivity made PSDBC and ZVI@PSDBC not only act as electron donors in PS activation to create radicals (mainly SO4·- and ·OH), but also as "mediators" to facilitate the direct electron transfer from 2,4-DCP to the catalysts-PS complexes. The C=O groups of PSDBC and ZVI@PSDBC aided in the production of 1O2. Meanwhile, zero-valent iron nanoparticles promoted the formation of radicals as the reactive sites of PS, resulting in the most effective 2,4-DCP degradation in the ZVI@PSDBC/PS system. The stability and practicability of sludge biochar materials had been demonstrated in reusability and actual wastewater experiments. The findings provided a promising way for the reuse of municipal sludge and effective PS activation in wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call