Abstract

ABSTRACT A pilot field study was conducted in a Canadian northern village (NV) to assess the remediation efficiency of sodium persulphate (SPS) alkali activated with calcium peroxide (CP) to degrade diesel from Arctic raft soil. A minimum temperature increase in the subsurface due to overall process reactions was required. The projected context of application was imperative to preserve the integrity of the remaining permafrost. The test was performed with two soil columns of 370 L buried in the ground. The columns were contaminated with 7500 mg diesel/kg representative raft soil that was matured for a period of 11 months. The continuous delivery by gravity and the static presence of the oxidizing solution was made over 33 days. During that period, SPS concentration, pH and temperatures, were monitored. SPS was activated prior to its distribution and activation by-products were confined in a surficial tank and under a sludge form. The maturation period resulted in the important natural attenuation of diesel (47%) that occurred in the shallower horizons of the soil profile. About 35% of the diesel remaining after the maturation period was removed by chemical oxidation during the operation period on site. The temperature increase measured during the SPS activation process was not significant while the temperature increase due to diesel degradation by oxidation in the subsurface was evaluated to be below 3°C. The soil columns were not clogged by the by-products as indicated by hydraulic testing before and after oxidizing treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call