Abstract

Thyroid hormone exhibits profound effects on neural progenitor turnover, survival, maturation, and differentiation during perinatal development. Studies over the past decade have revealed that thyroid hormone continues to retain an important influence on progenitors within the neurogenic niches of the adult mammalian brain. The focus of the current review is to critically examine and summarize the current state of understanding of the role of thyroid hormone in regulating adult neurogenesis within the major neurogenic niches of the subgranular zone in the hippocampus and the subventricular zone lining the lateral ventricles. We review in depth the studies that highlight a role for thyroid hormone, in particular the TRα1 receptor isoform, in regulating progenitor survival and commitment to a neuronal fate. We also discuss putative models for the mechanism of action of thyroid hormone/TRα1 on specific stages of subgranular zone and subventricular zone progenitor development, and highlight potential thyroid hormone responsive target genes that may contribute to the neurogenic effects of thyroid hormone. The effects of thyroid hormone on adult neurogenesis are discussed in the context of a potential role of these effects in the cognitive- and mood-related consequences of thyroid hormone dysfunction. Finally, we detail hitherto unexplored aspects of the effects of thyroid hormone on adult neurogenesis that provide impetus for future studies to gain a deeper mechanistic insight into the neurogenic effects of thyroid hormone. Thyroid hormone regulation of adult neurogenesis in the mammalian brain exhibits both unique and overlapping effects within distinct neurogenic niches. Thyroid hormone regulates hippocampal subgranular zone (SGZ) progenitor survival and neuronal cell fate acquisition and influences subventricular zone (SVZ) progenitor cell turnover, cell cycle exit, and neuronal cell fate acquisition. In this review, we summarize, critically discuss and highlight open questions in regard to thyroid hormone regulation of adult neurogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call