Abstract

Insights into the growth of high edge density carbon nanostructures were achieved by a systematic parametric study of plasma-enhanced chemical vapor deposition (PECVD). Such structures are important for electrode performance in a variety of applications such as supercapacitors, neural stimulation, and electrocatalysis. A morphological trend was observed as a function of temperature whereby graphenated carbon nanotubes (g-CNTs) emerged as an intermediate structure between carbon nanotubes (CNTs) at lower temperatures and vertically oriented carbon nanosheets (CNS), composed of few-layered graphene, at higher temperatures. This is the first time that three distinct morphologies and dimensionalities of carbon nanostructures (i.e., 1D CNTs, 2D CNSs, and 3D g-CNTs) have been synthesized in the same reaction chamber by varying only a single parameter (temperature). A design of experiments (DOE) approach was utilized to understand the range of growth permitted in a microwave PECVD reactor, with a focus on identifying graphenated carbon nanotube growth within the process space. Factors studied in the experimental design included temperature, gas ratio, catalyst thickness, pretreatment time, and deposition time. This procedure facilitates predicting and modeling high edge density carbon nanostructure characteristics under a complete range of growth conditions that yields various morphologies of nanoscale carbon. Aside from the morphological trends influenced by temperature, a relationship between deposition temperature and specific capacitance emerged from the DOE study. Transmission electron microscopy was also used to understand the morphology and microstructure of the various high edge density structures. From these results, a new graphene foliate formation mechanism is proposed for synthesis of g-CNTs in a single deposition process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.