Abstract

Electrostatic discharge (ESD) continues to pose significant risks to space missions despite decades of intense study. Tabulated values of material breakdown strength used in spacecraft charging models are often based on cursory measurements that may not be fully relevant to a given mission. Materials physics offers insight into the pertinent variables that affect breakdown and how to address them experimentally for spacecraft applications. We present measured distributions of ESD data across several test configurations for three polymeric materials that, taken together, begin to provide an understanding of how to estimate the likelihood of ESD events over a spacecraft’s mission lifetime. We discuss how consequences of these results apply to spacecraft charging modeling and design considerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.