Abstract

The demand for high-energy Li batteries is rapidly increasing due to the growing market for electric vehicles and portable electronic devices. Lithium (Li) metal has been considered as an ideal anode for high-energy Li batteries because of its high theoretical capacity (3860 mAh g<sup>-1</sup>) and low redox potential (-3.04 V vs. SHE). However, the utilization of Li metal anode is still limited by fundamental problems associated with unavoidable dendritic growth and huge volume changes during cycling. To improve the electrochemical performance of Li metal anode, various strategies have been explored including electrolyte design, interfacial engineering, and structural modifications. One of the most promising approaches is to store Li metal in porous host materials, which can effectively suppress the formation of Li dendrite and volume expansion. Herein, we focus on recent progress in the development of advanced Li metal anodes and suggest research directions and design rules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call