Abstract

Ionic liquid (IL) chemistry has evolved over the past century, such that these organic salts have impacted virtually every area of science and engineering. In the area of chemistry, initial applications of these salts were primarily the domain of chemists or chemical engineers who desired to manipulate the properties of IL solvents for a variety of applications including tuning various chemical processes. Since then, the chemistry of these organic salts has progressed such that changing an important property of a solvent (e.g., melting point or hydrophobicity) often involves simply altering the counterion of the organic salt. It is with this simplicity in mind that we have recently embarked upon the use of such chemistry to manipulate important properties of solid-phase ionic organic materials. To differentiate this chemistry from ionic liquid chemistry, we have coined the acronym GUMBOS (group of uniform materials based on organic salts). In this perspective article, we describe and demonstrate how ionic liquid chemistry can provide distinct and sometimes unique chemistry for solid-phase applications. Solid phase properties which can be manipulated via this chemistry include, but are not limited to, magnetism, melting point, hydrophobicity, fluorescence quantum yields, nanoformulations, material aggregation, viscosity, viscoelasticity, and cytotoxicity. In addition, we discuss a few examples to demonstrate how GUMBOS chemistry, until now, has been beneficial to the general area of materials chemistry and, more broadly, to the field of analytical chemistry. We also project future applications of this technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.