Abstract

Oncology, with its unique combination of clinical, physical, technological, and biological data provides an ideal case study for applying big data analytics to improve cancer treatment safety and outcomes. An oncology treatment course such as chemoradiotherapy can generate a large pool of information carrying the 5Vs hallmarks of big data. This data is comprised of a heterogeneous mixture of patient demographics, radiation/chemo dosimetry, multimodality imaging features, and biological markers generated over a treatment period that can span few days to several weeks. Efforts using commercial and in-house tools are underway to facilitate data aggregation, ontology creation, sharing, visualization and varying analytics in a secure environment. However, open questions related to proper data structure representation and effective analytics tools to support oncology decision-making need to be addressed. It is recognized that oncology data constitutes a mix of structured (tabulated) and unstructured (electronic documents) that need to be processed to facilitate searching and subsequent knowledge discovery from relational or NoSQL databases. In this context, methods based on advanced analytics and image feature extraction for oncology applications will be discussed. On the other hand, the classical p (variables)≫n (samples) inference problem of statistical learning is challenged in the Big data realm and this is particularly true for oncology applications where p-omics is witnessing exponential growth while the number of cancer incidences has generally plateaued over the past 5-years leading to a quasi-linear growth in samples per patient. Within the Big data paradigm, this kind of phenomenon may yield undesirable effects such as echo chamber anomalies, Yule–Simpson reversal paradox, or misleading ghost analytics. In this work, we will present these effects as they pertain to oncology and engage small thinking methodologies to counter these effects ranging from incorporating prior knowledge, using information-theoretic techniques to modern ensemble machine learning approaches or combination of these. We will particularly discuss the pros and cons of different approaches to improve mining of big data in oncology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call