Abstract

This study aimed at investigating the performance of multiple irrigation zoning scenarios on a 73ha irrigated field located in west Tennessee along the Mississippi river. Different clustering methods, including k-means, ISODATA and Gaussian Mixture, were selected. In addition, a new zoning method, based on integer linear programming, was designed and evaluated for center pivot irrigation systems with limited speed control capability. The soil available water content was used as the main attribute for zoning while soil apparent electrical conductivity (ECa), space-borne satellite images and yield data were required as ancillary data. A good agreement was observed among delineated zones by different clustering methods. The new zoning method explained up to 40% of available water content variance underneath center pivot irrigation systems. The ECa achieved the highest Kappa coefficient (=0.79) among ancillary attributes, hence exhibited a considerable potential for irrigation zoning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call