Abstract

ABSTRACT Introduction For the past two decades, virtual screening (VS) has been an efficient hit finding approach for drug discovery. Today, billions of commercially accessible compounds are routinely screened, and many successful examples of VS have been reported. VS methods continue to evolve, including machine learning and physics-based methods. Areas covered The authors examine recent examples of VS in drug discovery and discuss prospective hit finding results from the critical assessment of computational hit-finding experiments (CACHE) challenge. The authors also highlight the cost considerations and open-source options for conducting VS and examine chemical space coverage and library selections for VS. Expert opinion The advancement of sophisticated VS approaches, including the use of machine learning techniques and increased computer resources as well as the ease of access to synthetically available chemical spaces, and commercial and open-source VS platforms allow for interrogating ultra-large libraries (ULL) of billions of molecules. An impressive number of prospective ULL VS campaigns have generated potent and structurally novel hits across many target classes. Nonetheless, many successful contemporary VS approaches still use considerably smaller focused libraries. This apparent dichotomy illustrates that VS is best conducted in a fit-for-purpose way choosing an appropriate chemical space. Better methods need to be developed to tackle more challenging targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.