Abstract

Using the River Tagliamento, Italy, as an example, we examine the role of self-organisation in the formation and dynamics of vegetated islands in fluvial ecosystems. We consider how various biogeomorphic processes, such as feedbacks between tree growth and sedimentation, influence island self-assembly, as well as the potential influences of island landforms on resource distribution and shifts in ecosystem state. Despite the abundance of island landforms of different sizes and ages in island-braided reaches along the River Tagliamento, island formation is only found within a specific hydrological and sedimentary envelope, and depends upon a delicate balance of biotic-abiotic feedbacks. As a result, island landforms tend to be lost when river functioning is altered by human interventions. We argue that the specific biogeomorphic processes and self-organisation associated with river island dynamics offer an example of biogeomorphic inheritance, in which reciprocal feedbacks between species and geomorphic processes favour engineer species and promote the future development of the landforms. Thus, islands represent extended phenotypes – or external expressions of genetic traits – of key riparian ecosystem engineers. This capacity to modify the physical environment has important implications for landform evolution and riparian biodiversity. In conclusion, we propose several topics that merit investigation to improve our understanding of the biogeomorphology and self-organisation of river island systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call