Abstract

Abstract Understanding non-Gaussian statistics of atmospheric synoptic and low-frequency variability has important consequences in the atmospheric sciences, not least because weather and climate risk assessment depends on knowing and understanding the exact shape of the system’s probability density function. While there is no doubt that many atmospheric variables exhibit non-Gaussian statistics on many time (and spatial) scales, a full and complete understanding of this phenomenon remains a challenge. Various mechanisms behind the observed atmospheric non-Gaussian statistics have been proposed but remain, however, multifaceted and scattered in the literature: nonlinear dynamics, multiplicative noise, cross-frequency coupling, nonlinear boundary layer drag, and others. Given the importance of this subject for weather and climate research, and in an attempt to contribute to this topic, a thorough review and discussion of the different mechanisms that lead to non-Gaussian weather and climate variability are presented in this paper and an outlook is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.