Abstract

The feasibility of an acoustic–electrostatic hybrid levitator for small fluid and solid samples is evaluated. A proposed design and its theoretical assessment are based on the optional implementation of simple hardware components (ring electrodes) and standard laboratory equipment into typical commercial ultrasonic standing wave levitators. These levitators allow precise electrical charging of drops during syringe- or ink-jet-type deployment. The homogeneous electric ‘Millikan field’ between the grounded ultrasonic transducer and the electrically charged reflector provide an axial compensation of the sample weight in an indifferent equilibrium, which can be balanced by using commercial optical position sensors in combination with standard electronic PID position control. Radial electrostatic repulsion forces between the charged sample and concentric ring electrodes of the same polarity provide stable positioning at the centre of the levitator. The levitator can be used in a pure acoustic or electrostatic mode or in a hybrid combination of both subsystems. Analytical evaluations of the radial–axial force profiles are verified with detailed numerical finite element calculations under consideration of alternative boundary conditions. The simple hardware modification with implemented double-ring electrodes in ac/dc operation is also feasible for an electrodynamic/acoustic hybrid levitator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call