Abstract

Shortage in the production a high-octane gasoline is the key issues in the petroleum refineries. To overcome on this problem, isoolefinic hydrocarbons are suggested as prospective candidates as gasoline additives, due to their high antiknocking properties. The current research paper aims to propose the perspective towards a gasoline -property-first approach exhibiting octane hyperboosting based on isoolefinic hydrocarbons into low-octane gasoline components. Test methods on isoolefinic hydrocarbons samples, i.e., isooctene and isohexene into base motor fuel were investigated. The results reported that ultimate concentrations of isooctene and isohexene were at 50 wt%. Besides, Motor octane number (MON) blends from primary reference fuels (PRF-70) and isoolefinic hydrocarbons changed nonlinearly. The results reported that MON’s blends were higher than MON’s pure isohexene and isooctene. The recent discovery can be called as octane hyperboosting. Likewise, the current discovery can propose an unexplored aspect of autoignition kinetics research for gasoline mixtures. This may provide a new mechanism for remarkable increasing gasoline octane rating, which is necessary for increasing combustion performance in internal combustion engines. This phenomenon can be explained by the kinetics of formation primary radical by either monomolecular cleavage of CH/CC bond, or cleavage under the action of an oxygen biradical. Isooctene enters into the formation of a primary hydrocarbon radical at a rate that is more than 28 times higher than those of n-heptane and isooctane. Therefore, a decrease in the content of isooctene to 50% reduced the rate of primary reactions by almost 2 times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.