Abstract
The reductionist approach is prevalent in biomedical science. However, increasing evidence now shows that biological systems cannot be simply considered as the sum of its parts. With experimental, technological, and computational advances, we can now do more than view parts in isolation, thus we propose that an increasing holistic view (where a protein is investigated as much as a whole as possible) is now timely. To further advocate this, we review and discuss several studies and applications involving allostery, where distant protein regions can cross-talk to influence functionality. Therefore, we believe that an increasing big picture approach holds great promise, particularly in the areas of antibody engineering and drug discovery in rational drug design.
Highlights
Due to natural complexity and resource limitations such as those present in technical, computational, and experimental methods, the reductionist approach in biomedical science has often reduced proteins to a mere sum of its parts, namely subunits, domains/folds, secondary and super-secondary structure elements etc
Scientists have been looking at proteins in parts based on domains and functional sites while ignoring the less characterized parts with no known functions
New artificial classifications based on the reductionist approach were introduced
Summary
Due to natural complexity and resource limitations such as those present in technical, computational, and experimental methods, the reductionist approach in biomedical science has often reduced proteins to a mere sum of its parts, namely subunits, domains/folds, secondary and super-secondary structure elements etc. Antibody fragments such as antigen-binding fragment (Fab), single-chain variable fragment (scFv), or Fc, are widely used as research reagents and as potential therapeutics [1,2], and the classifications of protein domains in structural refinement and functional predictions [3]. The V-region FWR families of both antibody heavy (VH) and light (VL) chains were found to affect C-region receptor binding [15], possibly modulating effector cell functions [38] (Figure 1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.