Abstract

Ischemic stroke profoundly influences the peripheral immune system, which responds quickly to brain ischemia and participates in the evolution of poststroke neuroinflammation, while a period of systemic immunosuppression ensues. Poststroke immunosuppression brings harmful consequences, including increased infection rates and escalated death. As the most abundant cell population in the fast-responding innate immune system, myeloid cells including neutrophils and monocytes play an indispensable role in systemic immunosuppression after stroke. The change in myeloid response after stroke can be regulated by circulating DAMPs (damage-associated molecular patterns) and neuromodulatory mechanisms, which contain sympathetic nervous system, hypothalamic-pituitary-adrenal, and parasympathetic nervous system. In this review, we summarize the emerging roles and newly identified mechanisms underlying myeloid cell response in poststroke immunosuppression. Deeper understanding of the above points may pave the way for future development of novel therapeutic strategies to treat poststroke immunosuppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.