Abstract

We study mixed integer nonlinear programs (MINLP) that are driven by a collection of indicator variables where each indicator variable controls a subset of the decision variables. An indicator variable, when it is "turned off", forces some of the decision variables to assume a fixed value, and, when it is "turned on", forces them to belong to a convex set. Most of the integer variables in known MINLP problems are of this type. We first study a mixed integer set defined by a single separable quadratic constraint and a collection of variable upper and lower bound constraints. This is an interesting set that appears as a substructure in many applications. We present the convex hull description of this set. We then extend this to produce an explicit characterization of the convex hull of the union of a point and a bounded convex set defined by analytic functions. Further, we show that for many classes of problems, the convex hull can be expressed via conic quadratic constraints, and thus relaxations can be solved via second-order cone programming. Our work is closely related with the earlier work of Ceria and Soares (1996) as well as recent work by Frangioni and Gentile (2006) and, Akturk, Atamturk and Gurel (2007). Finally, we apply our results to develop tight formulations of mixed integer nonlinear programs in which the nonlinear functions are separable and convex and in which indicator variables play an important role. In particular, we present strong computational results with two applications - quadratic facility location and network design with congestion - that show the power of the reformulation technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.