Abstract

In non-orthoscopic video see-through (VST) head-mounted displays (HMDs), depth perception through stereopsis is adversely affected by sources of spatial perception errors. Solutions for parallax-free and orthoscopic VST HMDs were considered to ensure proper space perception but at expenses of an increased bulkiness and weight. In this work, we present a hybrid video-optical see-through HMD the geometry of which explicitly violates the rigorous conditions of orthostereoscopy. For properly recovering natural stereo fusion of the scene within the personal space in a region around a predefined distance from the observer, we partially resolve the eye-camera parallax by warping the camera images through a perspective preserving homography that accounts for the geometry of the VST HMD and refers to such distance. For validating our solution; we conducted objective and subjective tests. The goal of the tests was to assess the efficacy of our solution in recovering natural depth perception in the space around said reference distance. The results obtained showed that the quasi-orthoscopic setting of the HMD; together with the perspective preserving image warping; allow the recovering of a correct perception of the relative depths. The perceived distortion of space around the reference plane proved to be not as severe as predicted by the mathematical models.

Highlights

  • Augmented reality (AR) systems based on head-mounted displays (HMDs) intrinsically provide the user with an egocentric viewpoint and represent the most ergonomic and efficient solution for aiding manual tasks performed under direct vision [1]

  • AR HMDs are commonly classified according to the AR paradigm they implement: video see-through (VST) or optical see-through (OST)

  • We presented a novel approach for the development of stereoscopic AR HMDs able to offer the benefits of both the video and the optical see-through paradigms [20]

Read more

Summary

Introduction

Augmented reality (AR) systems based on head-mounted displays (HMDs) intrinsically provide the user with an egocentric viewpoint and represent the most ergonomic and efficient solution for aiding manual tasks performed under direct vision [1]. AR HMDs are commonly classified according to the AR paradigm they implement: video see-through (VST) or optical see-through (OST). VST HMDs, the view of the real world is captured by a pair of stereo cameras rigidly anchored to the visor with an anthropometric interaxial distance. The stereo views of the world are presented onto the HMD after being coherently combined with the virtual content [2]. In OST HMDs, the user’s direct view of the world is preserved.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call