Abstract
The vascular myogenic response is an inherent property of VSM in the walls of small arteries and arterioles, allowing these principal resistance segments of the microcirculation to respond to changes in transmural pressure. Elevated intraluminal pressure leads to myogenic constriction, whereas reduced pressure leads to myogenic dilation. This review focuses on the physiological significance of the myogenic response in microvascular networks. First, historical concepts related to the detection of stretch by the vessel wall are reviewed, including the wall tension hypothesis, and the implications of the proposal that the arteriolar network responds to Pp changes as a system of series-coupled myogenic effectors. Next, the role of the myogenic response in the local regulation of blood flow and/or Pc is examined. Finally, the interaction of myogenic constriction and dilation with other local control mechanisms, including metabolic, neural and shear-dependent mechanisms, is discussed. Throughout the review, an attempt is made to integrate historical and current literature with an emphasis on the physiological role, rather than the underlying signaling mechanisms, of this important component of vascular control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.