Abstract
As the highly toxic pollutants will seriously harm human health, it is particularly important to establish the analysis and detection technology of food pollutants. Compared with the traditional detection methods, fluorescent detection techniques based on nanomaterials trigger wide interesting because of reduced detection time, simple operation, high sensitivity and selectivity, and economic. In this review, the application of fluorescent sensors in food pollutants detection is presented. Firstly, conventional fluorescent nanomaterials including metal-based quantum dots, carbon dots, graphene quantum dots and metal nanoclusters were summarized, with emphasis on the photoluminescence mechanism. Then, the fluorescence sensors based on these nanomaterials for food pollutants detection were discussed, involving in the established methods, sensor mechanisms, sensitivity, selectivity, and practicability of fluorescence sensors. The selected analytes focus on five types of higher toxic food pollutants, including mycotoxins, foodborne pathogens, pesticide residues, antibiotic residues, and heavy metal ions. Finally, outlook on the future and potential development of fluorescence detection technology in the field of food science were proposed, including green synthesis and reusability of fluorescence probes, large-scale industrialization of sensors, nondestructive testing of samples and degradation of harmful substances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.