Abstract
Levulinic acid is a carboxylic acid present in industrial downstream. It is an important chemical and can be transformed into various important chemicals such as 1,4-pentanediol, aminolevulinic acid, succinic acid, gamma valarolactone, hydoxyvaleric acid, and diphenolic acid. It is considered one of the top ten most important building block chemicals and bio-derived acids. Levulinic acid can be directly produced using biomass, chemical synthesis, and fermentation processes at industrial and laboratory scales. The biomass process produces the char, whereas the fermentation process generates waste during the production of levulinic acid, leading to an increase in the production cost and waste streams. The separation of levulinic acid from the waste is expensive and challenging. In the present study, reactive extraction was employed using trioctylamine in i-octanol for the separation of levulinic acid. The experimental results were expressed in terms of performance parameters like distribution coefficient (0.099-6.14), extraction efficiency (9-86%), loading ratio (0.09-0.7), and equilibrium complexation constant (11.34-1.05). The mass action law model was also applied and found the predicted values were in close agreement with the experimental results. The mixer settler extraction in series was used to achieve more than 98% separations of acid. Furthermore, the conceptual approach for separation of levulinic acid using a mixer settler reactor scheme was discussed and presented various design parameters including extraction efficiency, diffusion coefficient, equilibrium complexation constant, and loading ratio. The study is helpful in recovering the valuable chemicals present in industrial downstream and reducing their environmental impacts if any.
Highlights
Many industries exit the downstream wastes during the production of their products
Some of the valuable chemicals and biochemicals are present in the industrial downstream waste and fermentation broth (Shen et al 2018)
The sample of levulinic acid was prepared with 0.1-1 mol.L-1 as initial concentration of acid in the aqueous phase
Summary
Many industries exit the downstream wastes during the production of their products. Some of the valuable chemicals and biochemicals are present in the industrial downstream waste and fermentation broth (Shen et al 2018). The separation of these compounds is important due to their harmful effects on the environment. Can be carried in the fermentation broth and industrial downstream waste. These acids are very important due to their various applications like fuel, medicine, food, plastics, cosmetics, chemicals, fertilizer, etc
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.