Abstract

Potassium and glutamate are the most abundant ions in every living cell. Whereas potassium plays a major role to keep the cellular turgor and to buffer the negative charges of the nucleic acids, the major function of glutamate is to serve as the universal amino group donor. In addition, both ions are involved in osmoprotection in bacterial cells. Here, we discuss how bacterial cells maintain the homeostasis of both ions and how adaptive evolution allows them to live even at extreme potassium limitation. Interestingly, positively charged amino acids are able to partially replace potassium, likely by buffering the negative charge of DNA. A major factor involved in the control of potassium homeostasis in Gram-positive bacteria is the essential second messenger cyclic di-AMP. This nucleotide is synthesized in response to the potassium concentration and in turn controls the expression and activity of potassium transporters. We discuss the link between the two major ions, DNA and the second messenger c-di-AMP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.