Abstract

The subject of battery sources and electrical energy accumulators is currently very topical. Moreover, the possibilities of reusing already discarded sources are being explored as so-called “second-life batteries”. This article is concerned with studying and modelling the behaviour of a battery in an electric aircraft in operation — the voltage during discharge. Outcomes from extensive experiments on real long-term stored batteries have provided statistically robust sets of data on both long-term stored and new batteries; some of the data, however, are truncated. A modern approach that neglects the truncated issues and is based on functional data analysis and modified with a specific time series is used to model the process. This suggested model is much more accurate than the model used previously as it can effectively process truncated data. It also allows a certain degree of generalization. The aim is to determine the probability density of the time when the battery reaches the critical value, including the numerical statistics, for both stored and new batteries. The results are compared using the specific statistical Kullback–Leibler divergence approach to determine the degree of difference. The proposed model applies to similar issues where battery voltage is modelled in a time domain while the data form is truncated. It is proved, however, that further use of the stored batteries does not disrupt the safe and reliable operation of an electric airplane in terms of their functionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.