Abstract

This article explores the estimation of parameters and states for linear stochastic systems with deterministic control inputs. It introduces a novel Kalman filtering approach called Kalman Filtering with Correlated Noises Recursive Generalized Extended Least Squares (KF-CN-RGELS) algorithm, which leverages the cross-correlation between process noise and measurement noise in Kalman filtering cycles to jointly estimate both parameters and system states. The study also investigates the theoretical implications of the correlation coefficient on estimation accuracy through performance analysis involving various correlation coefficients between process and measurement noises. The research establishes a clear relationship: the accuracy of identified parameters and states is directly proportional to positive correlation coefficients. To validate the efficacy of this algorithm, a comprehensive comparison is conducted among different algorithms, including the standard Kalman filter algorithm and the augmented-state Kalman filter with correlated noises algorithm. Theoretical findings are not only presented but also exemplified through a numerical case study to provide valuable insights into practical implications. This work contributes to enhancing estimation accuracy in linear stochastic systems with deterministic control inputs, offering valuable insights for control system design and state-space modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.