Abstract

Low-temperatures (LT) stress is one of the abiotic stresses in plants that affect cell survival, cell division, photosynthesis, and water transport, negatively affecting plant growth, and eventually constraining crop productivity. LT stress is categorized as, (i) chilling stress where low temperature (0–15°C) causes injury without ice crystal formation in plant tissues, and (ii) freezing stress (<0°C), where ice formation occurs within plant tissues. Both stresses are together termed low temperature or cold stress. In general, plants originating from tropical and subtropical regions are sensitive to LT, whereas temperate plants showed chilling tolerance to variable degrees. Low-temperature stress negatively impacts plants, may affect the survival rate of crop plants, and also affect various processes, including cell division, photosynthesis, plant growth, development, metabolism, and finally reduce the yield of crop plants, especially in the tropics and subtropics. To overcome stress generated by low-temperature exposure, plants trigger a cascade of events that enhance their tolerance by gene expression changes and activation of the ROS scavenging system, thus inducing biochemical and physiological modifications. In this chapter, a detailed discussion of different changes in plants and their tolerance mechanism is done to understand the plant’s response under LT stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call