Abstract

It is well known that recursive algorithms for harmonic analysis have better characteristics in terms of monitoring the change of the spectrum in comparison to methods based on the processing of blocks of consecutive samples, such as, for example, discrete Fourier transform (DFT). This property is particularly important when applying spectral estimation in real-time systems. One of the recursive algorithms is the resonator-based one. The approach of the parallel cascades of multiple resonators (MR) with the common feedback has been generalized as the cascaded-resonator (CR)-based structure for recursive harmonic analysis. The resulting filters of the CR structure can be finite impulse response (FIR) type or the infinite impulse response (IIR) ones as a computationally more efficient solution, optimizing the frequency responses of all harmonics simultaneously. In the case of the IIR filter, the unit characteristic polynomial present in the FIR filter is replaced with an optimized characteristic polynomial of the transfer function. Such a change does not lead to an increase in computing requirements and changes only the resonator gain values. By using a conveniently linearized iterative algorithm for stability control purpose, based on the Rouche’s theorem, the iterative linear-programming-based or the constrained linear least-squares (CLLS) optimization techniques can be used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call