Abstract

Since the first ion imaging experiment [D. W. Chandler and P. L. Houston, J. Chem. Phys. 87, 1445-1447 (1987)], demonstrating the capability of collecting an image of the photofragments from a unimolecular dissociation event and analyzing that image to obtain the three-dimensional velocity distribution of the fragments, the efficacy and breadth of application of the ion imaging technique have continued to improve and grow. With the addition of velocity mapping, ion/electron centroiding, and slice imaging techniques, the versatility and velocity resolution have been unmatched. Recent improvements in molecular beam, laser, sensor, and computer technology are allowing even more advanced particle imaging experiments, and eventually we can expect multi-mass imaging with co-variance and full coincidence capability on a single shot basis with repetition rates in the kilohertz range. This progress should further enable "complete" experiments-the holy grail of molecular dynamics-where all quantum numbers of reactants and products of a bimolecular scattering event are fully determined and even under our control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call