Abstract
Reliable human following is one of the key capabilities of service and personal assisting robots. This paper presents a novel person tracking and following approach for autonomous mobile robots that are equipped with a 2D laser rangefinder (LRF) and a monocular camera. The proposed method does not impose restrictions on a person’s clothes, does not require a head or an upper body to be within a camera field of view and is suitable for low height indoor robots as well. The algorithm is based on a metric that takes into an account parameters obtained directly from LRF and monocular camera data. The algorithm was implemented and tested in the Gazebo simulator. Next, it was integrated into a control system of the TIAGo Base mobile robot and successfully validated in university environment experiments with real people. In addition, this paper proposes a new criterion of algorithm performance estimation, which is a function of false positives number and traveled distances by a person and by a robot. Further this criterion is used to compare performance of the proposed method with the Multiple Instance Learning (MIL) tracker in simulated and in real world environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.