Abstract

BackgroundTreatment guidelines for a variety of cancers have been increasingly used in clinical practice, and have resulted in major improvement in patient outcomes. However, recommended regimens (even first-line treatments) are clearly not ideal for every patients. In the present study, we used mini patient-derived xenograft (mini-PDX) and next-generation sequencing to develop personalized treatment in a patient with metastatic duodenal adenocarcinoma.MethodsResected metachronous metastatic tumor tissues were implanted into SCID mice to determine the sensitivity to a variety of drug regimens. Mutation profiles were assessed using both DNA whole-exome sequencing (DNA–WES) and RNA sequencing. The results of the analyses were used to select optimal treatment for the patient with metastatic duodenal adenocarcinoma.ResultsAssessment with mini-PDX models took only 7 days. The results showed high sensitivity to S-1 plus cisplatin, gemcitabine plus cisplatin and everolimus alone. The patient received gemcitabine plus cisplatin initially, but the treatment was terminated due to toxicity. The patient was then switched to treatment with S-1 alone. The overall disease-free survival was 34 months. DNA–WES and RNA sequencing identified KRAS mutation (A146T), TP53 (C229Yfs*10) and RICTOR amplification in the metastatic duodenal adenocarcinoma. These findings provided further support to the results of the mini-PDX, and suggest mTOR inhibitors should be used if and when relapse eventually occurs in this patient.ConclusionsMini-PDX model combined with WES/RNA sequencing can rapidly assess drug sensitivity in cancer patients and reveal key genetic alterations. Further research on this technology for personalized therapy in patients with refractory malignant tumors is warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call