Abstract

Trajectory data may include the user’s occupation, medical records, and other similar information. However, attackers can use specific background knowledge to analyze published trajectory data and access a user’s private information. Different users have different requirements regarding the anonymity of sensitive information. To satisfy personalized privacy protection requirements and minimize data loss, we propose a novel trajectory privacy preservation method based on sensitive attribute generalization and trajectory perturbation. The proposed method can prevent an attacker who has a large amount of background knowledge and has exchanged information with other attackers from stealing private user information. First, a trajectory dataset is clustered and frequent patterns are mined according to the clustering results. Thereafter, the sensitive attributes found within the frequent patterns are generalized according to the user requirements. Finally, the trajectory locations are perturbed to achieve trajectory privacy protection. The results of theoretical analyses and experimental evaluations demonstrate the effectiveness of the proposed method in preserving personalized privacy in published trajectory data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.