Abstract
Personal assistive devices for rehabilitation will be in increasing demand during the coming decades due to demographic change, i.e., an aging society. Among the elderly population, difficulty in walking is the most common problem. Even though there are commercially available lower-limb exoskeleton systems, the coordination between user and device still needs to be improved to achieve versatile personalized gaits. To tackle this issue, an advanced EXOskeleton framework for Versatile personalized gaIt generation with a Seamless user-exo interface (called “EXOVIS”) is proposed in this study. The main control of the framework uses adaptive bio-inspired modular neural mechanisms. These mechanisms include decoupled central pattern generators (CPGs) with Hebbian-based synaptic plasticity and adaptive CPG post-processing networks with error-based learning. The control method facilitates the rapid online learning of personalized walking gaits described by the walking frequency as well as hip, knee, and ankle joint patterns. The method is verified on a real lower-limb exoskeleton system with six degrees of freedom (DOFs) on different subjects under static and dynamic conditions such as flat terrain and a split-belt treadmill. The results show that the proposed method can not only automatically learn to generate personalized symmetrical gaits, but also asymmetrical gaits, which have not been explicitly shown by other approaches so far.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.