Abstract

As the e-commerce shopping websites like Amazon become more and more popular, amounts of products spring up on the internet and bring great difficulties to product search. However, the conventional text-based search is confined to retrieving products relevant to query and personalized product search is still a challenging problem in e-commerce. Consequently, in this paper, we propose a personalized product search approach, which combines personalized multimedia recommendation into searching. First, we construct a hypergraph based on products’ descriptions and user’s transaction history. Then the similarity between products and the user is calculated based on two kind of textural feature extraction methods. After that, iterative procedure is introduced to obtain the final relevance score of each product to the user. Experimental results on our collected Amazon dataset show the effectiveness of the proposed approach. The MAP@5 of our method can reach 0.48 and the MAP@10 can reach 0.44. We propose a new re-ranking method for personalized product search, in which we utilize user’s transaction history to choose products which is closer to the user’s preference into the higher positions. Experimental results on our collected dataset show that our method is much better than the comparison methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.