Abstract

Location information of workers are usually required for optimal task allocation in mobile crowdsensing, which however raises severe concerns of location privacy leakage. Although many approaches have been proposed to protect the locations of users, the location protection for task allocation in mobile crowdsensing has not been well explored. In addition, to the best of our knowledge, none of existing privacy-preserving task allocation mechanisms can provide personalized location protection considering different protection demands of workers. In this paper, we propose a personalized privacy-preserving task allocation framework for mobile crowdsensing that can allocate tasks effectively while providing personalized location privacy protection. The basic idea is that each worker uploads the obfuscated distances and personal privacy level to the server instead of its true locations or distances to tasks. In particular, we propose a Probabilistic Winner Selection Mechanism (PWSM) to minimize the total travel distance with the obfuscated information from workers, by allocating each task to the worker who has the largest probability of being closest to it. Moreover, we propose a Vickrey Payment Determination Mechanism (VPDM) to determine the appropriate payment to each winner by considering its movement cost and privacy level, which satisfies the truthfulness, profitability, and probabilistic individual rationality. Extensive experiments on the real-world datasets demonstrate the effectiveness of the proposed mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call