Abstract
The advent of abundant on-board sensors and electronic devices in vehicles populates the paradigm of participatory sensing to harness crowd-sourced data gathering for intelligent transportation applications, such as distance-to-empty prediction and eco-routing. While participatory sensing can provide diverse driving data, there lacks a systematic study of effective utilization of the data for personalized prediction. There are considerable challenges on how to interpolate the missing data from a sparse dataset, which often arises from participatory sensing. This paper presents and compares various approaches for personalized vehicle energy consumption prediction, including a blackbox framework that identifies driver/vehicle/environment-dependent factors and a collaborative filtering approach based on matrix factorization. Furthermore, a case study of distance-to-empty prediction for electric vehicles by participatory sensing data is conducted and evaluated empirically, which shows that our approaches can significantly improve the prediction accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.