Abstract
During a trip planning, tourists gather information from different sources, select and rank the places to visit according to their personal interests, and try to devise daily tours among them. This paper addresses the complex selection and touring problem and proposes a “filter-first, tour-second” framework for generating personalized tour recommendations for tourists based on information from social media and other online data sources. Collaborative filtering is applied to identify a subset of optional points of interest that maximize the potential satisfaction, while there are some preselected mandatory points that the tourists must visit. Next, the underlying orienteering problem is solved via an Iterated Tabu Search algorithm. The goal is to generate tours that contain all mandatory points and maximize the total score collected from the optional points visited daily, taking into account different day availabilities and opening hours, limitations on the tour lengths, budgets and other restrictions. Computational experiments on benchmark datasets indicate that the proposed touring algorithm is very competitive. Furthermore, the proposed framework has been evaluated on data collected from Foursquare. The results show the practical utility and the temporal efficacy of the recommended tours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.