Abstract
Desorption electrospray ionization (DESI) mass spectrometry is an emerging technology for direct therapeutic drug monitoring in dried blood spots (DBS). Current DBS methods require manual application of small molecules as internal standards for absolute drug quantification. With industrial standardization in mind, we superseded the manual addition of standard and built a three-layer setup for robust quantification of salicylic acid directly from DBS. We combined a dioctyl sodium sulfosuccinate weave facilitating sample spreading with a cellulose layer for addition of isotope-labeled salicylic acid as internal standard and a filter paper for analysis of the standard-containing sample by DESI-MS. Using this setup, we developed a quantification method for salicylic acid from whole blood with a validated linear curve range from 10 to 2000 mg/L, a relative standard deviation (RSD%) ≤14%, and determination coefficients of 0.997. The limit of detection (LOD) was 8 mg/L and the lower limit of quantification (LLOQ) was 10 mg/L. Recovery rates in method verification by LC-MS/MS were 97 to 101% for blinded samples. Most importantly, a study in healthy volunteers after administration of a single dose of Aspirin provides evidence to suggest that the three-layer setup may enable individual pharmacokinetic and endpoint testing following blood collection by finger pricking by patients at home. Taken together, our data suggests that DBS-based quantification of drugs by DESI-MS on pre-manufactured three-layer cartridges may be a promising approach for future near-patient therapeutic drug monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.