Abstract

In recent years, research on location predictions by mining trajectories of users has attracted a lot of attentions. Existing studies on this topic mostly focus on individual movements, considering the trajectories as solo movements. However, a user usually does not visit locations just for the personal interest. The preference of a travel group has significant impacts on the places they visit. In this paper, we propose a novel personalized location prediction approach which further takes into account users’ travel group type. To achieve this goal, we propose a new group pattern discovery approach to extract the travel groups from spatial–temporal trajectories of users. Type of the discovered groups, then, are identified through utilizing the profile information of the group members. The core idea underlying our proposal is the discovery of significant movement patterns of users to capture frequent movements by considering the group types. Finally, the problem of location prediction is formulated as an estimation of the probability of a given user visiting a given location based on his/her current movement and his/her group type. To the best of our knowledge, this is the first work on location prediction based on trajectory pattern mining that investigates the influence of travel group type. By means of a comprehensive evaluation using various datasets, we show that our proposed location prediction framework achieves significantly higher performance than previous location prediction methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.