Abstract
BackgroundHypertension is a prevalent cardiovascular disease with severe longer-term implications. Conventional management based on clinical guidelines does not facilitate personalized treatment that accounts for a richer set of patient characteristics.MethodsRecords from 1/1/2012 to 1/1/2020 at the Boston Medical Center were used, selecting patients with either a hypertension diagnosis or meeting diagnostic criteria (≥ 130 mmHg systolic or ≥ 90 mmHg diastolic, n = 42,752). Models were developed to recommend a class of antihypertensive medications for each patient based on their characteristics. Regression immunized against outliers was combined with a nearest neighbor approach to associate with each patient an affinity group of other patients. This group was then used to make predictions of future Systolic Blood Pressure (SBP) under each prescription type. For each patient, we leveraged these predictions to select the class of medication that minimized their future predicted SBP.ResultsThe proposed model, built with a distributionally robust learning procedure, leads to a reduction of 14.28 mmHg in SBP, on average. This reduction is 70.30% larger than the reduction achieved by the standard-of-care and 7.08% better than the corresponding reduction achieved by the 2nd best model which uses ordinary least squares regression. All derived models outperform following the previous prescription or the current ground truth prescription in the record. We randomly sampled and manually reviewed 350 patient records; 87.71% of these model-generated prescription recommendations passed a sanity check by clinicians.ConclusionOur data-driven approach for personalized hypertension treatment yielded significant improvement compared to the standard-of-care. The model implied potential benefits of computationally deprescribing and can support situations with clinical equipoise.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.