Abstract

ObjectiveAccumulating evidence from invasive cortical stimulation mapping and noninvasive neuroimaging studies indicates that brain function may be preserved within brain tumors. However, a noninvasive approach to accurately and comprehensively delineate individual‐specific functional networks in the whole brain, especially in brain tissues within and surrounding tumors, is still lacking. The purpose of the study is to develop a clinically useful technique that can map functional regions within tumoral brains.MethodsWe developed an individual‐specific functional network parcellation approach using resting state functional magnetic resonance imaging (rsfMRI) that effectively captured functional networks within and nearby tumors in 20 patients. We examined the accuracy of the functional maps using invasive cortical stimulation and task response.ResultsWe found that approximately 33.2% of the tumoral mass appeared to be functionally active and demonstrated robust functional connectivity with non‐tumoral brain regions. Functional networks nearby tumors were validated by invasive cortical stimulation mapping. Intratumoral sensorimotor networks mapped by our technique could be distinguished by their distinct cortico‐cerebellar connectivity patterns and were consistent with hand movement evoked fMRI task activations. Furthermore, in some patients, cognitive networks that were detected in the tumor mass showed long‐distance and distributed functional connectivity.InterpretationOur noninvasive approach to mapping individual‐specific functional networks using rsfMRI represents a promising new tool for identifying regions with preserved functional connectivity within and surrounding brain tumors, and could be used as a complement to presurgical planning for patients undergoing tumor resection surgery. ANN NEUROL 2022;91:353–366

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call