Abstract

BackgroundAutism spectrum disorder (ASD) is a heritable condition related to brain development that affects a person’s perception and socialization with others. Here, we examined variability in the brain morphology in ASD children and adolescent individuals at the level of brain cortical structural profiles and the level of each brain regional measure.MethodsWe selected brain structural MRI data in 600 ASDs and 729 normal controls (NCs) from Autism Brain Imaging Data Exchange (ABIDE). The personalized estimate of similarity between gray matter volume (GMV) profiles of an individual to that of others in the same group was assessed by using the person-based similarity index (PBSI). Regional contributions to PBSI score were utilized for brain age gap estimation (BrainAGE) prediction model establishment, including support vector regression (SVR), relevance vector regression (RVR), and Gaussian process regression (GPR). The association between BrainAGE prediction in ASD and clinical performance was investigated. We further explored the related inter‐regional profiles of gene expression from the Allen Human Brain Atlas with variability differences in the brain morphology between groups.ResultsThe PBSI score of GMV was negatively related to age regardless of the sample group, and the PBSI score was significantly lower in ASDs than in NCs. The regional contributions to the PBSI score of 126 brain regions in ASDs showed significant differences compared to NCs. RVR model achieved the best performance for predicting brain age. Higher inter-individual brain morphology variability was related to increased brain age, specific to communication symptoms. A total of 430 genes belonging to various pathways were identified as associated with brain cortical morphometric variation. The pathways, including short-term memory, regulation of system process, and regulation of nervous system process, were dominated mainly by gene sets for manno midbrain neurotypes.LimitationsThere is a sample mismatch between the gene expression data and brain imaging data from ABIDE. A larger sample size can contribute to the model training of BrainAGE and the validation of the results.ConclusionsASD has personalized heterogeneity brain morphology. The brain age gap estimation and transcription-neuroimaging associations derived from this trait are replenished in an additional direction to boost the understanding of the ASD brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.