Abstract

ABSTRACTIn dose-finding clinical trials, it is becoming increasingly important to account for individual-level heterogeneity while searching for optimal doses to ensure an optimal individualized dose rule (IDR) maximizes the expected beneficial clinical outcome for each individual. In this article, we advocate a randomized trial design where candidate dose levels assigned to study subjects are randomly chosen from a continuous distribution within a safe range. To estimate the optimal IDR using such data, we propose an outcome weighted learning method based on a nonconvex loss function, which can be solved efficiently using a difference of convex functions algorithm. The consistency and convergence rate for the estimated IDR are derived, and its small-sample performance is evaluated via simulation studies. We demonstrate that the proposed method outperforms competing approaches. Finally, we illustrate this method using data from a cohort study for warfarin (an anti-thrombotic drug) dosing. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.