Abstract
Search engine advertising has become the main stream of online advertising system. In current search engine advertising systems, all users will get the same advertisement rank if they use the same query. However, different users may have different degree of interest to each advertisement even though they query the same word. In other words, users prefer to click the interested ad by themselves. For this reason, it is important to be able to accurately estimate the interests of individual users and schedule the advertisements with respect to individual users' favorites. For users that have rich history queries, their interests can be evaluated using their query logs. For new users, interests are calculated by summarizing the interests of other users who use similar queries. In this paper, we provide a model to automatically learn individual user's interests based on features of user history queries, user history views of advertisements, user history clicks of advertisements. Then, advertisement schedule is performed according to individual user's interests in order to raise the clickthrough rate of search engine advertisements in response to each user's query. We simulate user's interests of ads and clicks in our experiments. As a result, our personalized ranking scheme of delivering online ads can increase both search engine revenues and users' satisfactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.