Abstract

The use of biomodels in the laboratory for studying and training cervical laminoplasty has not yet been reported. We propose the use of a cervical spine biomodel for surgical laminoplasty training. This is an experimental study. Ten 3D identical cervical spine biomodels were printed based on computed tomography (CT) and magnetic resonance imaging scans of a patient diagnosed with spondylotic cervical myelopathy. The additive manufacturing method used fused deposition modeling and polylactic acid (PLA) was selected as the raw material. The sample was divided into 2 groups: control (n=5; the biomodels were submitted to CT scanning) and open-door (n=5; the biomodels were submitted to open-door laminoplasty and postoperative CT). The area and anteroposterior diameter of the vertebral canal were measured on CT scans. Printing each piece took 12 hours. During the surgical procedure, there was sufficient support from the biomodels to keep them immobilized. Using the drill was feasible; however continuous irrigation was mandatory to prevent plastic material overheating. The raw material made the biomodel CT study possible. The vertebral canal dimensions increased 24.80% (0.62 cm2) in area and 24.88% (3.12 mm) in anteroposterior diameter CONCLUSIONS: The cervical spine biomodels can be used for laminoplasty training, even by using thermosensitive material such as PLA. The use of continuous irrigation is essential while drilling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.