Abstract

Anti-tumor drug efficacy prediction poses an unprecedented challenge to realizing personalized medicine. This paper proposes to predict personalized anti-tumor drug efficacy based on clinical data. Specifically, we encode the clinical text as numeric vectors featured with hidden topics for patients using Latent Dirichlet Allocation model. Then, to classify patients into two classes, responsive or non-responsive to a drug, drug efficacy predictors are established by machine learning based on the Latent Dirichlet Allocation topic representation. To evaluate the proposed method, we collected and collated clinical records of lung and bowel cancer patients treated with platinum. Experimental results on the data sets show the efficacy and effectiveness of the proposed method, suggesting the potential value of clinical data in cancer precision medicine. We hope that it will promote the research of drug efficacy prediction based on clinical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.