Abstract

BackgroundTherapeutic management of epilepsy remains a challenge, since optimal systemic antiseizure medication (ASM) concentrations do not always correlate with improved clinical outcome and minimal side effects. We tested the feasibility of noninvasive real-time breath metabolomics as an extension of traditional therapeutic drug monitoring for patient stratification by simultaneously monitoring drug-related and drug-modulated metabolites.MethodsThis proof-of-principle observational study involved 93 breath measurements of 54 paediatric patients monitored over a period of 2.5 years, along with an adult’s cohort of 37 patients measured in two different hospitals. Exhaled breath metabolome of epileptic patients was measured in real time using secondary electrospray ionisation–high-resolution mass spectrometry (SESI–HRMS).ResultsWe show that systemic ASM concentrations could be predicted by the breath test. Total and free valproic acid (VPA, an ASM) is predicted with concordance correlation coefficient (CCC) of 0.63 and 0.66, respectively. We also find (i) high between- and within-subject heterogeneity in VPA metabolism; (ii) several amino acid metabolic pathways are significantly enriched (p < 0.01) in patients suffering from side effects; (iii) tyrosine metabolism is significantly enriched (p < 0.001), with downregulated pathway compounds in non-responders.ConclusionsThese results show that real-time breath analysis of epileptic patients provides reliable estimations of systemic drug concentrations along with risk estimates for drug response and side effects.

Highlights

  • Therapeutic management of epilepsy remains a challenge, since optimal systemic antiseizure medication (ASM) concentrations do not always correlate with improved clinical outcome and minimal side effects

  • 66 paediatric epileptic patients from the University Children’s Hospital Basel (UKBB), under treatment with various ASMs requiring therapeutic drug monitoring (TDM) per standard care were enroled in this study

  • The reasons being either (i) patients suffered from severe neurological impairment, preventing them to understand the instructions of the exhalation maneuver, or that the side effects would not allow them to perform the breath test, (ii) some technical issue with instrument during patient visit, or (iii) in rare cases, clinical laboratory could not return blood concentration of ASMs (Supplementary Fig. 1)

Read more

Summary

Introduction

Therapeutic management of epilepsy remains a challenge, since optimal systemic antiseizure medication (ASM) concentrations do not always correlate with improved clinical outcome and minimal side effects. We tested the feasibility of noninvasive real-time breath metabolomics as an extension of traditional therapeutic drug monitoring for patient stratification by simultaneously monitoring drug-related and drug-modulated metabolites. We find (i) high between- and withinsubject heterogeneity in VPA metabolism; (ii) several amino acid metabolic pathways are significantly enriched (p < 0.01) in patients suffering from side effects; (iii) tyrosine metabolism is significantly enriched (p < 0.001), with downregulated pathway compounds in non-responders. Conclusions These results show that real-time breath analysis of epileptic patients provides reliable estimations of systemic drug concentrations along with risk estimates for drug response and side effects

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.