Abstract
Personalised service recommendation is the key technology for service platforms; the demand preferences of users are the important factors for personalised recommendation. First, in order to improve accuracy and adaptability of service recommendation, services are needed to be initialised before being recommended and selected, then they are classified and clustered according to demand preferences, and service clusters are defined and demonstrated. In the sparse problem of service function matrix, historical and potential preferences are expressed as double matrices. Second, service cluster is viewed as the basic business unit, we optimise graph summarisation algorithm and construct service recommendation algorithm SCRP, helped by the experiments about variety parameters, which has more advantages than other algorithms. Third, we select fuzzy degree and difference to be the two key indicators, and use some service clusters to complete simulating and analyse algorithm performances. The results show that our service selection and recommendation method is better than others, which might effectively improve the quality of service recommendation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.