Abstract

BackgroundInformal electronic waste recycling activities are major contributors to ambient air pollution, yet studies assessing the effects or relationship between direct/continuous exposure of informal e-waste workers to particulate matter and cardiovascular function are rare.MethodsRepeated measurements of fractions of PM2.5, PM10–2.5, and PM10 in personal air of informal e-waste workers, (n = 142) and a comparable group (n = 65) were taken over a period of 20 months (March 2017 to November, 2018). Concurrently, 5-min resting electrocardiogram was performed on each participant to assess resting heart rate variability indices. Linear mixed-effects models were used to assess the association between PM fractions and cardiac function.ResultsSDNN, RMSSD, LF, HF and LH/HF ratio were all associated with PM. Significant associations were observed for PM2.5 and Mean NN (p = 0.039), PM10 and SDNN (p = 0.035) and PM 10–2.5 and LH/HF (p = 0.039). A 10 μg/m3 increase in the concentrations of PM 2.5, PM10–2.5, and PM10 in personal air was associated with reduced HRV indices and increased resting HR. A 10 μg/m3 per interquartile (IQR) increase in PM10–2.5 and PM10, decreased SDNN by 11% [(95% CI: − 0.002- 0.000); (p = 0.187)] and 34% [(95% CI: − 0.002-0.001); (p = 0.035)] respectively. However, PM2.5 increased SDNN by 34% (95% CI: − 1.32-0.64); (p = 0.493). Also, 10 μg/m3 increase in PM2.5, PM10–2.5 and PM10 decreased RMSSD by 27% [(− 1.34–0.79); (p = 0.620)], 11% [(− 1.73, 0.95); (p = 0.846)] and 0.57% [(− 1.56–0.46); (p = 0.255%)].ConclusionInformal e-waste workers are at increased risk of developing cardiovascular disease from cardiac autonomic dysfunction as seen in reduced HRV and increased heart rate.

Highlights

  • Increasing evidence implicates informal electronic waste (e-waste) recycling activities as a major contributor to ambient air pollution and yet studies describing the effects of continuous exposure to airborne particulates on cardiovascular (CV) function of informal e-wasteAmoabeng Nti et al BMC Public Health (2021) 21:2161 workers are unavailable

  • standard deviation of NN intervals (SDNN), Rootmean square of successive differences (RMSSD), low-frequency power (LF), high-frequency power (HF) and LH/HF ratio were all associated with PM

  • Significant associations were observed for ­PM2.5 and Mean NN (p = 0.039), PM10 and SDNN (p = 0.035) and PM 10–2.5 and LH/HF (p = 0.039)

Read more

Summary

Introduction

Increasing evidence implicates informal electronic waste (e-waste) recycling activities as a major contributor to ambient air pollution and yet studies describing the effects of continuous exposure to airborne particulates on cardiovascular (CV) function of informal e-wasteAmoabeng Nti et al BMC Public Health (2021) 21:2161 workers are unavailable. Increasing evidence implicates informal electronic waste (e-waste) recycling activities as a major contributor to ambient air pollution and yet studies describing the effects of continuous exposure to airborne particulates on cardiovascular (CV) function of informal e-waste. Reduced heart rate variability (HRV) is reported as an independent predictor of CV disease and death across diverse populations [9,10,11]. It is a marker for poor health and increased risk for cardiac events [12]. Informal electronic waste recycling activities are major contributors to ambient air pollution, yet studies assessing the effects or relationship between direct/continuous exposure of informal e-waste workers to particulate matter and cardiovascular function are rare

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.