Abstract
Personal thermal comfort models are a paradigm shift in predicting how building occupants perceive their thermal environment. Previous work has critical limitations related to the length of the data collected and the diversity of spaces. This paper outlines a longitudinal field study comprising 20 participants who answered Right-Here-Right-Now surveys using a smartwatch for 180 days. We collected more than 1080 field-based surveys per participant. Surveys were matched with environmental and physiological measured variables collected indoors in their homes and offices. We then trained and tested seven machine learning models per participant to predict their thermal preferences. Participants indicated 58% of the time to want no change in their thermal environment despite completing 75% of these surveys at temperatures higher than 26.6°C. All but one personal comfort model had a median prediction accuracy of 0.78 (F1-score). Skin, indoor, near body temperatures, and heart rate were the most valuable variables for accurate prediction. We found that ≈250-300 data points per participant were needed for accurate prediction. We, however, identified strategies to significantly reduce this number. Our study provides quantitative evidence on how to improve the accuracy of personal comfort models, prove the benefits of using wearable devices to predict thermal preference, and validate results from previous studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.