Abstract

Personal exposure to air pollution is affected by its concentration in the microenvironment and individual time-activity patterns. To investigate personal black carbon (BC) exposure levels and identify their potential determinants, we conducted a panel study among 67 elderly residents aged 60–69 years in Jinan, China. Personal BC exposure was measured using portable real-time monitors, while corresponding ambient BC concentrations and meteorological conditions were also collected from the local central site. Time-activity and household characteristics were recorded. A linear mixed-effects model was used to identify potential determinants of personal BC exposure. The daily average personal BC exposure concentration was 4.1 ± 2.0 μg/m3 (±standard deviation, SD), which was significantly lower than the ambient concentration (4.6 ± 2.5 μg/m3) (p < 0.001). Strong correlation (Spearman’s r = 0.63, p < 0.001) was found between personal and ambient BC concentrations. The fixed-site monitoring ambient concentration cannot fully reflect the actual personal exposure concentration. Ambient BC concentration, ambient temperature, relative humidity, education level and air purifier use were significant determinants of personal BC exposure. Our findings highlight the need for detailed assessment of personal exposure on health risk assessment of BC and also help develop strategies for targeted risk reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call