Abstract
Person identification across nonoverlapping cameras, also known as person reidentification, aims to match people at different times and locations. Reidentifying people is of great importance in crucial applications such as wide-area surveillance and visual tracking. Due to the appearance variations in pose, illumination, and occlusion in different camera views, person reidentification is inherently difficult. To address these challenges, a reference-based method is proposed for person reidentification across different cameras. Instead of directly matching people by their appearance, the matching is conducted in a reference space where the descriptor for a person is translated from the original color or texture descriptors to similarity measures between this person and the exemplars in the reference set. A subspace is first learned in which the correlations of the reference data from different cameras are maximized using regularized canonical correlation analysis (RCCA). For reidentification, the gallery data and the probe data are projected onto this RCCA subspace and the reference descriptors (RDs) of the gallery and probe are generated by computing the similarity between them and the reference data. The identity of a probe is determined by comparing the RD of the probe and the RDs of the gallery. A reranking step is added to further improve the results using a saliency-based matching scheme. Experiments on publicly available datasets show that the proposed method outperforms most of the state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.